Orthogonal Tensor Sparse Neighborhood Preserving Embedding for Two-dimensional Image

نویسندگان

  • MINGMING QI
  • YANG XIANG
چکیده

Orthogonal Tensor Neighborhood Preserving Embedding (OTNPE) is an efficient dimensionality reduction algorithm for two-dimensional images. However, insufficiencies of the robustness performance and deficiencies of supervised discriminant information are remained. Motivated by the sparse learning, an algorithm called Orthogonal Tensor Sparse Neighborhood Embedding (OTSNPE) for two-dimensional images is proposed in the paper. The algorithm firstly regards two-dimensional images as points in the second-order tensor space, then, the neighborhood reconstruction of samples within the same class is achieved with sparse reconstruction. Finally, projections are gotten to preserve local sparse reconstruction relation and neighborhood relation within the same class and spatial relation of pixels in an image. Experiments operated on Yale, YaleB and AR databases show, in contrast to the existing typical tensor dimensionality reduction algorithms, the algorithm can improve the accuracy rate of classification algorithms based on the shortest Euclidean distance. Key–Words: Dimensionality Reduction, Tensor Image, Neighborhood Preserving Embedding, Sparse Reconstruction, Supervised Discriminant Information, Face Recognition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tensor Train Neighborhood Preserving Embedding

In this paper, we propose a Tensor Train Neighborhood Preserving Embedding (TTNPE) to embed multidimensional tensor data into low dimensional tensor subspace. Novel approaches to solve the optimization problem in TTNPE are proposed. For this embedding, we evaluate novel tradeoff gain among classification, computation, and dimensionality reduction (storage) for supervised learning. It is shown t...

متن کامل

Discriminant sparse neighborhood preserving embedding for face recognition

Sparse subspace learning has drawn more and more attentions recently. However, most of the sparse subspace learning methods are unsupervised and unsuitable for classification tasks. In this paper, a new sparse subspace learning algorithm called discriminant sparse neighborhood preserving embedding (DSNPE) is proposed by adding the discriminant information into sparse neighborhood preserving emb...

متن کامل

Constraint Sparse Neighborhood Preserving Embedding

Neighborhood Preserving Embedding (NPE) and extensions of NPE are hot research topics of data mining at present. An algorithm called Constraint Sparse Neighborhood Preserving Embedding (CSNPE) for dimensionality reduction is proposed in the paper. The algorithm firstly creates the local sparse reconstructive relation information of samples; then, exacts the pairwise constrain information of sam...

متن کامل

The target HRRP recognition with supervised discrimination sparse neighbourhood preserving embedding

In this paper, we combine the objective function of three methods together and propose a new method, called supervised discrimination sparse neighborhood preserving embedding (SDSNPE). The proposed method can preserve the local and global manifold structure of the samples simultaneously. In addition, the supervised information is introduced into the neighborhood preserving embedding (NPE) and s...

متن کامل

Image feature optimization based on nonlinear dimensionality reduction

Image feature optimization is an important means to deal with high-dimensional image data in image semantic understanding and its applications. We formulate image feature optimization as the establishment of a mapping between highand low-dimensional space via a five-tuple model. Nonlinear dimensionality reduction based on manifold learning provides a feasible way for solving such a problem. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013